Constitutive Overexpression of Muscarinic Receptors Leads to Vagal Hyperreactivity

نویسندگان

  • Angelo Livolsi
  • Nathalie Niederhoffer
  • Nassim Dali-Youcef
  • Walid Mokni
  • Catherine Olexa-Zorn
  • Jean-Pierre Gies
  • Luc Marcellin
  • Josiane Feldman
  • Pascal Bousquet
چکیده

BACKGROUND Alterations in muscarinic receptor expression and acetylcholinesterase (AchE) activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS). Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE) gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS Cardiac muscarinic M(2) and M(3) receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively) and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2) receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2) receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2) receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits). This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2) receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits) and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE The results suggest that cardiac muscarinic receptor overexpression plays a critical role in the development of vagal hyperreactivity, whereas AchE hyperactivity appears as a compensatory consequence of it. Since similar vagal disorders were observed recently by us in SIDS, muscarinic receptor overexpression could become a marker of risk of vasovagal syncopes and SIDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The changing role of eosinophils in long-term hyperreactivity following a single ozone exposure.

Ozone hyperreactivity over 24 h is mediated by blockade of inhibitory M(2) muscarinic autoreceptors by eosinophil major basic protein. Because eosinophil populations in the lungs fluctuate following ozone, the contribution of eosinophils to M(2) dysfunction and airway hyperreactivity was measured over several days. After one exposure to ozone, M(2) function, vagal reactivity, smooth muscle resp...

متن کامل

Atropine pretreatment enhances airway hyperreactivity in antigen-challenged guinea pigs through an eosinophil-dependent mechanism.

Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, bu...

متن کامل

Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils.

M2muscarinic receptors limit acetylcholine release from the pulmonary parasympathetic nerves. M2receptors are dysfunctional in antigen-challenged guinea pigs, causing increased vagally mediated bronchoconstriction. Dysfunction of these M2 receptors is due to eosinophil major basic protein, which is an antagonist for M2 receptors. Histamine-induced bronchoconstriction is composed of a vagal refl...

متن کامل

Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins.

We have examined the effects of raising G protein concentration on the pharmacology of a series of agonist and antagonist ligands at the m1, m3, and m5 muscarinic subtypes using a functional assay. Overexpression of G(alpha q) induced constitutive activity of these receptors. The constitutive activity was reversed completely by every muscarinic antagonist tested, which indicates that they are a...

متن کامل

Substance P-induced airway hyperreactivity is mediated by neuronal M(2) receptor dysfunction.

Neuronal muscarinic (M(2)) receptors inhibit release of acetylcholine from the vagus nerves. Hyperreactivity in antigen-challenged guinea pigs is due to blockade of these M(2) autoreceptors by eosinophil major basic protein (MBP) increasing the release of acetylcholine. In vivo, substance P-induced hyperactivity is vagally mediated. Because substance P induces eosinophil degranulation, we teste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010